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Abstract-In this paper. the effects of restraining force on springback are analyzed by following the
stress-strain development across the sheet thickness for flanged channels. stretch-bent under plane
strain conditions. An isotropic-kinematic hardening rule is assumed for the material. so that the
elastic-plastic unloading behavior involved in forming procedures with complicated loading paths
can be more accurately simulated. Good agreement is found between analytical and experimental
results on simple springback. side-wall curls and their respective dependence on the in-plane restrain
ing force. Furthermore. the significance of individual parameters on general springback phenomena
is clearly identified.

INTRODUCTION

Springback is generally defined as the additional deformation of a structural component.
resulting from the removal of forming loads. Such a deformation may contribute towards
significant deviation from a desired shape. and thus cause quality concerns. Since the
springback problem has generally been observed to worsen with increased material tensile
strength (Davies. 1984). it bl.'Comes very important to be able to predict springback quan
titatively as well as qualitatively in the auto industry's pursuit of higher strength materials
for weight reduction. While there have been quite a few experiments characterizing the
importance of various pammeters on springback (for example Davies. 1984; Liu. 1988;
Hayashi. 1984). there has only been limited success in establishing simple theoretical models
widely applicable to practical springback problems. Specifically. all analytical attempts (for
example Duncan and Bird. 1978; Thompson and Ellen. 1985; Wang. 1984; Wenner. 1983)
were only for simple bending cases and assumed an elastic unloading behavior. This paper
features (I) the adoption of an isotropic-kinematic hardening rule, which more accurately
stimulates the material behavior during complex loading; (2) the effectiveness of in-plane
restraining force on reducing springback ; and (3) the importance of individual parameters
in affecting springback.

PROBLEM FORMULATION AND RESULTS

The two problems studied here are generally known as simple springback and side
wall curl. Both are featured in Fig. I. where the cross-section of a wide piece of sheet metal
being formed into a flanged channel by the downward movement of a punch into the die
cavity is sketched. A typical sheet section at the bottom of the channel, which is bent to the
punch radius during forming. relaxes its unbalanced internal stresses by altering its shape
after the forming load is removed. This is referred to as simple springback. On the other
hand. elements along the side wall are drawn in from the flange area and go through a more
complicated bending-straightening path. The removal of the forming loads then results in
a curled instead of a straight wall.

The problems are simplified by assuming that both the bottom portion and the side
wall portion of the channel are uniformly formed. Therefore, modeling the in-plane stress
(0') and strain (e) developments across the sheet thickness (denoted hereafter as 0 to t in
the =-direction) in a representatit'e section from each of the above-mentioned two areas. is
sufficient to predict springback. It is further assumed that plane-strain conditions prevail
and that the plane section remains plane during bending; that is. if the neutral axis position
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Fig. I. A sketch of the stretch·draw forming of a flanged channel and the springback phenomena.

(=n) and the radius of curvature (K) for the deformed section are known, the in-plane strain
distribution through sheet thickness is approximately written as

&(Z) = K(Z - In).

Here, a power-law type of in-plane stress-strain curvc is adoptcd :

(I)

Note that the absolute value is used so that eqn (I) applies to both tensile and compressive
loading conditions. As will be explained in the Appendix, the above normalized stress
strain curve is dcrived from a conventional equivalent stress-equivalent strain curve. The
in-plane yield stress and yield strain, denoted by u, and e.•" respectively, in eqn (I), are
accordingly defined in terms of uniaxial properties of the material. The constants for several
steels investigated in this paper are listed at the end of the Appendix.

An isotropic-kinematic hardening rule is employed here to describe the behavior of
the material during reversed loading. This hardening rule is more accurate than the isotropic
hardening rule in predicting elastic-plastic reverse loading behavior, and is easier to for·
mulate (Chu, 1987). For the essentially one-dimensional problem at hand, the model reduces
to the following simple stress-strain relationship for a reverse loading path initiated from
a plastic state (u" e,):

{
l.:1el/2&,

l.:1ul/(2u...} = (l.:1el/(2e,.)r
1.:1&1 < 2&.v

for
l.:1el > 2ev :

(2)

where 1.:1( )1 denotes the absolute value of the progression of a quantity from ( )" where
reverse loading is initiated. Figure 2 illustrates the initial in-plane stress-strain curve,
denoted by (0). for monotonic loading from a virginal state, followed consecutively by three
reverse loading paths which are likely to occur in the present study. According to the adopted
hardening model, the reverse loading path proceeds by eqn (2) (a two-fold magnification of
the initial stress-strain curve) until the most recently established flow stress level is reached,
at which point it coincides with and then resumes the previously interrupted path. For
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Fig. 2. The in-plane stress-strain behavior for a complex loading pattern: the solid curves for the
isotropic-kinematic hardening model and the dotted curves for the isotropic hardening model.

comparison purposes. the stress-strain behavior based on the classical isotropic hardening
model. shown by the dotted lines. is also included.

The in-plane stretching force (N) and the bending moment about the mid-surface (M)
can now be obtained in terms of/( and :n. by integrating the stress function 11[&(:)] in the
:-direction :

N == £11(/(: - :n)] d:. M == £I1[/(Z- :n)]' (: - 1/2) d:.

Henceforward. normalized quantities () are used not only to simplify the equations.
but also to clearly identify the importance of individual parameters; that is. length is
normalized by sheet thickness (I). stress and strain are normalized by their corresponding
in-plane yield values &, and 11,. curvature is normalized by (&../1). and (N. M) is normalized
by (11,1.11)./2/6). The above equations are therefore rewritten as

Simple springhack
The process that leads to the simple springback phenomenon can be described by the

following series of proportional paths: (I) The sheet is formed from a stress-free state to
("0, No). where "0 == I/(&..(Rp+zn)] with Rp denoting the punch radius. and No the given
normalized in-plane force. (2) The sheet is uniformly released of the restraining force. from
("0. No) to ("0' N == 0). (3) After the punch is removed. the sheet reaches a state which is
free from external forces (N == o. M == 0). Note that the above unloading paths (2) and (3)
more closely follow the actual forming process than the more commonly used proportional
path. which unloads directly from ("0. No) to (N == o. M == 0).

An example of the strain and stress distribution across the thickness at the end ofeach
proportional path is sketched in Fig. 3. where dotted curves from the previous path are
included to show the stress and strain progression. The corresponding equations which
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Fig. 3. An eltample of the stress and strain development across the sheet thickness for a simple
springbaek problem.

satisfy the prescribed conditions arc:

For path (I),

For path (2),

For path (3),
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Fig. 4. Analytical and experimental simple springback results as a function of normalized in-plane
restf"Jining force for various materials.

Here. the numerical subscripts indicate the path with which the quantities are associated.
Note that eqns (3) only apply if i nl > I{Ko. £2 < 2 and £2+K)(I-in) > 2. When these
conditions change as a result of neutral axis movement. eqns (3) need to be correctly
modified so that the integration limits remain in the range (0, I) and the complicated
material behavior along different loading branches is taken into account. The above
mentioned non-linearity of the equations about in .. £2, in) and K) requires solution by a
computer program which was written to handle the trial and error scheme used here.

The final normalized curvature K( is (Ko - K). The simple springback, which is defined
as the ratio of the final radius of curvature to the designed one, is then obtained by

The calculated simple springback results, which are affected by the in-plane stretching
force. are displayed as solid curves in Figs 4 for several steels. The following major analytical
conclusions are worth noting:
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(a) The problem parameters £,. Rp and lit all have the same effect on springback since
they only enter the equilibrium equations, such as eqns (3). via the same dimensionless
curvature measure "0. which was defined earlier as (IIRp£y). Therefore. the observed increase
in both simple springback and the slope of the (RriRp) - No curve, as a result of higher Rp

values for individual materials, can also be seen for materials with larger yield strain values.
(b) A decrease in the strain hardening exponent n, which is the only other dimensionless

parameter that enters the equilibrium equations, moves the (Rrl Rp)- No curve slightly to
the left while still maintaining its general shape. This can be seen by comparing the curves
in Figs 4 with similar "0 values. which are shown in Figs 4 for this purpose.

(c) An in-plane restraining force of the order of (IT,.t), or approximately a unit of
normalized force as shown in Figs 4, can remove most of the simple springback. In fact.
this limiting value of No which is required for effective springback reduction is shown later
to simply mean a force large enough to stretch-bend the complete sheet, plastically.

The above findings are substantiated by very good agreement, both qualitatively and
quantitatively. between the predicted curves and experimental data (from Liu, 1988) which
are represented by open symbols in Figs 4.

It is shown in the following that for two special cases, further useful results for simple
springback can be obtained in closed-form without resorting to tedious calculations. The
first case involves a small in-plane stretching force and relatively severe bending. where
"0» I can be assumed. Both eqns (3-1) and (3-2) apply here and are approximately solved
by a series expansion about Znl = !. That is. by replacing inl with 0-<5) in the equations
and neglecting higher order terms of <5, we obtain

Zn 1 ~ !(I - No/:x]

£.2 ~ 2KoNo/[(:XKo+2)+No(Ko/:x-2n)]

M2 ~ 3(fJ-yNo);

wherc(X == OKor,fJ = :x/(n+2)andy = [OKo)-2:Xfl/(n+ 1)1/[2:x+Kol.lftheunbendingpath
(3) isan elastic process. we then have (in), K) = 0, 2M2)' The simple springback is therefore.

(4)

The range of No values necessary for this prediction to be appropriate can be extended at
the most to N1(inl = 1/'(0)' which is approximately K1J/(n+ I).

The second c1oscd-form approximation is obtained for No values larger than
N,(=nl = -I/Ko); that is, when the complete plate is plastically stretch-bent. By assuming
(-=nd» I, it can be shown that

The simple springback therefore approaches a limiting value,

(5)

The limiting value is seen to be independent of the degree of bending, Ko. This is in agreement
with experimental results for different Rp values (and hence different Ko values), which
merge with each other at large N in Figs 4.

Approximations according to eqns (4) and (5) for the most severely bent case where
Rp = 7.62 mm. are shown in Figs 4 as dotted curves. They appear to be very accurate in
obtaining (a) the effectiveness of No in reducing springback and (b) the limiting value of
springback. Both features are important in determining the restraining force and the punch
radius required to form a desired curvature.
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Side-....all curl
For a typical section in the side-wall area, the process occurring is composed of a

slightly more complicated history: (1) It is formed from (fl =0, M=0) to (Ko, flo).
(2) The sheet is then straightened to (K.., flo), where the degree of straightening depends on
the geometric constraints such as the die gap. (3) The clamping force is removed but K..
remains geometrically constrained in the die cavity. That is. the condition (KlO' flo = 0)
has to be satisfied. (4) An external force-free state (M = 0, fl =0) is reached.

The side-wall curl has been experimentally measured by the depth of the crown formed
between a chord. of a carefully chosen length. and the curled wall (Davies. 1984). It should
be noted that such a measurement of a single value is appropriate only when the resulting
side wall has a uniform radius ofcurvature; that is, when K.. in paths (2) and (3) maintains
a constant value for all sections along the wall. This is approximately the case in the
experimental studies of side-wall curl by Davies (1984). but not so in the more realistic
channel forming set-up by Liu (1988). While the former provides a simplified procedure to
shed light on the importance of individual parameters on curl. the latter. in emphasizing
the effects of the in-plane force on preventing curl, shows the complexity involved in a more
realistic drawing process.

We first analyze the experiments of Davies (1984), for which it is noted that flo =O.
K... = 0 and Ko z; t/[£,.R<I]. where R<I is the die radius. For this comparatively simple problem
involving complex loading. both the current isotropic-kinematic hardening model and the
classical isotropic hardening model are used to show the differences in predicting springback
by the two models. By assuming that Ko » I. the residual moment at the end of path (3)
can be easily obtained:

z; 3(1-2 1 ")(!Kor/(n+2).

The side-wall curl is then calculated by

(curl) = R( - J[Rl- (//2)2] z; 121(8Rc), (assuming (/12R()2 « I)

- 112 ••• I" - 1/2M-" It- 4 A( - - - 4 1....·

(6)

whcre 1denotcs the afore-mentioned chord Icngth, Rc< = I/I\:( = tl(Krl:y» is the final radius
ofcurvature and/(n) is [3(2 1

- 2" - 2 -")/(n +2)] for the isotropic-kinematic hardening model.
and is [3/(n+2)] for the isotropic hardening model. Examples of the predicted dependence
ofcurl on sheet thickness t. without the in-plane restraining force. are shown in Figs 5. The
solid curves from the isotropic-kinematic hardening model are thus (2 1- 211_ 2 -n) times
more conservative than the dotted curves from the isotropic hardening model. The exper
imental data. represented by filled symbols. are seen to be in good qualitative agreement
with analytical results; but quantitatively they seem to scatter between the curves predicted
by the two models.

In the following, the effects of post-straining on curl, as tested in Davies (1984), will
be studied. The sheet here is strained from the straightened state €(z) == 0 to €(z) == ip. By
assuming that 61' « Ko. the residual moments after post-straining are:
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Fig. 5. Analytical and experimental side·wall curl results as a function of sheet thickness for four
different steels: the solid curves are for the isotropic-kinematic hardening model and the dotted

curves are for the isotropic hardening model.
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Fig. 6. The stress development in the simple curl problem following bending (the dotted curve).
straightening (the ip = 0 curve) and a progressive amount of post·straining.

for ip ~ 2

for ip > 2
for ip ~ 2 1/(1-11',

(7)

2 lIe I-III < &p < 2,,".

£p ~ 2,(0'

These are obtained by following the stress developments for various amounts of post
straining, as illustrated in Figs 6 for both hardening rules. The amount of curl is thus
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Fig. 7. Analytical and eltperimental results for side-wall curl as a function of the amount of
normalized post-straining.

calculated by (curl) = - U:M,e.l1 and displayed in Figs 7. The comparison between exper
imental data, represented by filied symbols, and analytical curves, marked at the ends with
corresponding symbols, shows that the currently adopted isotropic-kinematic hardening
model predicts the effectiveness of post-straining on curl reduction more accurately than
the isotropic hardening model (except for mild stccls where the analytical curve seems to
lie consistently below the experimental data by a significant amount). We therefore emphasize
the important finding discovered from the isotropic-kinematic hardening model here: a
unit increase of normalized post-straining up to two, or an increase of post-straining by Il,

up to 2£,., can effectively reduce curl by (~' ~/:/I). This significance of post-straining by 2£"
which is equivalent to post-stretching by a force (0',/), in largely eliminating curl was not
readily observed in the study by Davies (1984).

As mentioned earlier, in most of the realistic drawing operations, geometric conditions
are too complex to warrant a closed-form analysis such as the one presented above. The
following attempts to predict the effect of in-plane restraining force on the curl for the
channel forming operation with a larger-than-thickness die gap (Liu, 1988), which serves
as an example to illustrate the difficulties involved. As sketched in Fig. 8, if the in-plane
stretching force is not large enough to completely straighten the sheet from its curved shape
(permitted by a finite die gap) to KtII =0 during forming, the side wall, while remaining in
the die cavity, then assumes a relatively complex form. That is, the sections that are drawn
to different depths are subjected to varying degrees of unbending: from KtII = 0 near the
bottom to some finite KtII value near the entrance of the die cavity. The resulting wall is
therefore ofconstantly changing curvature, which means that the single-valued experimental
curl measurement does not fully represent the deviation of a curled wall from a desirable
straight shape. Furthermore, the present analysis carried out on section level cannot be
expected to predict such a curl well. Nevertheless, it is assumed here that the deformed wall
can be approximately represented by an arc with an average radius of curvature, so that a
single-valued curl can be obtained and compared with experimental results. This average
radius of curvature is arbitrarily assumed here to vary proportionately with the in-plane
restraining force as follows: when No = 0, K", is determined by geometric constraints as
noted in Fig. 8. (This deformed curvature is obtained by simulating the wall in the die
cavity with a constrained cantilever beam.) As No increases, K•. decreases linearly to "til = 0
at No = N,(Zn' = 0).

A computer program is again used to carry out the trial-and-error method and the
side-wall curls are presented in Figs 9 as functions of the in-plane stretching forces. The
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Fig. 9. Analytical and experimental results for curl as a function of nonnaliz\.-d in-plane restraining
force for two steels.

experimental curl data, shown in Liu (1988) against the in-plane force measured in the
horizontal flange section instead of in the vertical side-wall section, are shifted to the right
by a factor of ~1f/2 to indicate the effect of Coulomb friction over the die radius. with p.
arbitrarily assumed to be 0.1, and are represented by filled symbols in Figs 9. The observed
agreement between experimental and analytical results is surprisingly good. Also displayed
in Fig. 9a are the results as predicted for two other R.t values. Both the predicted minor
dependence of curl on die radius and the slight decrease of slope with increasing R.t are in
qualitative agreement with experimental results in Liu (1988) (excluding the R.t = 18 mm
case where recoiling may have occurred (Hayashi, 1984». In Fig. 9b the dotted curve,
obtained by setting K•. == 0, is for a drawing operation with die gap equal to sheet thickness.
The significant difference between the solid and dotted curves therefore represents the
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influence of die gap on curl. The slope change, or the change of effectiveness of 80 on
reducing curl, observed in Fig. 9b near 8 0 = 1, is noted to be caused by plastic, instead of
elastic, reverse loading behavior in the final unbending path.

CONCLUSIONS

This study has succeeded in analytically predicting springback and its dependence on
in-plane restraining force. The important conclusions are:

(I) Springback is found to mainly depend on two dimensionless parameters: the strain
hardening exponent of the material n and the degree of bending. defined by t!(Re•.).

(2) An in-plane restraining force of the order of the yield strength can eliminate most
of the simple springback and simple curl. However, in a more realistic drawing operation
than studied here, curl is found to be even more sensitive to parameters such as die gap,
which affects the amount of straightening preceded curling.

(3) The isotropic-kinematic hardening model adopted here is found not only to simplify
the formulation, but also predict springback phenomena more accurately than the classical
isotropic hardening, in particular, for materials with higher yield strength.

(4) Complications caused by geometric parameters such as die gap, which are not
included in the equilibrium equations, may be satisfactorily accounted for by modifying
the prescribed lo.tding conditions.
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APPENDIX

The adopt..'<! power-law type of ..-quivalent stress-equivalent strain curve is

where E denotes Young's modulus and nand K are material constants determined from uniallial tensile data. In
order to have a \."Ontinuous a.-e. curve. the yield strain is obtained by £(1;). "" K(c.r.. That is. (1;)... (KIE}':ll-.,
and therefore, (If.)... E(t.),. Note that the calculated (11.). is different from the measured yield stress. For the
plilne·strain problem considered here. the major in·plane stress and strain, denoted by f1 and I: respectively. are
related to thdr "'quivalcnt counterpart by f1 "" ca. and c£ .. 1:", with c .. (I +r)/J(I +2r) where r is the anisotropy
parameter of the material. The in-plane stress strain relationship therefore can be derived as follows:

By normalizing the above equation against the in-plane yield stress a.( .. c(a.).• .. c l &, .. c,·· Kt;), we obtain
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The materials constants for several steels studied bere are listed below.

For simple springback studies:

n K(MPa) r

HSLA50 steels 0.15 745 0.96 E == 206. 850 MPa
DP80 steels (I == 1.17 mm) 0.14 931 1.01 for all steels
DPSO steels (I - 0.79 mm) 0.14 1000 1.01
SKDQ steels 0.22 559 2.02

For curl studies:

n K(MPa) r

CRLC steels 0.23 487 I.S
HSLASO steels 0.15 745 0.96
HSLASO steels 0.11 942 1.0
DP80 steels 0.14 1000 1.01
SKDQ steels 0.2 503 1.88


